High fat diet reduces neuroprotection of isoflurane post-treatment: role of carboxyl-terminal modulator protein-Akt signaling

نویسندگان

  • Hai Yu
  • Jiao Deng
  • Zhiyi Zuo
چکیده

OBJECTIVE High-fat diet (HFD) contributes to the increased prevalence of obesity and hyperlipidemia in young adults, a possible cause for their recent increase in stroke. Isoflurane post-treatment provides neuroprotection. Isoflurane post-treatment induced neuroprotection in HFD-fed mice was determined. METHODS Six-week old CD-1 male mice were fed HFD or regular diet (RD) for 5 or 10 weeks. Their hippocampal slices (400 µm) were subjected to oxygen-glucose deprivation (OGD). Some slices were exposed to isoflurane for 30 min immediately after OGD. Some mice had a 90-min middle cerebral arterial occlusion and were post-treated with 2% isoflurane for 30 min. RESULTS OGD time-dependently induced cell injury. This injury was dose-dependently reduced by isoflurane. The effect was apparent at 1% or 2% isoflurane in RD-fed mice but required 3% isoflurane in HFD-fed mice. HFD influenced the isoflurane effects in DG. OGD increased carboxyl-terminal modulator protein (CTMP), an Akt inhibitor, and decreased Akt signaling. Isoflurane reduced these effects. LY294002, an Akt activation inhibitor, attenuated the isoflurane effects. HFD increased CTMP and reduced Akt signaling. Isoflurane improved neurological outcome in the RD-fed mice but not in the HFD-fed mice. CONCLUSIONS HFD attenuated isoflurane post-treatment-induced neuroprotection possibly because of decreased prosurvival Akt signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Astrocytic Expression of CTMP Following an Excitotoxic Lesion in the Mouse Hippocampus

Akt (also known as protein kinase B, PKB) has been seen to play a role in astrocyte activation of neuroprotection; however, the underlying mechanism on deregulation of Akt signaling in brain injuries is not fully understood. We investigated the role of carboxy-terminal modulator protein (CTMP), an endogenous Akt inhibitor, in brain injury following kainic acid (KA)-induced neurodegeneration of ...

متن کامل

Isoflurane neuroprotection in hypoxic hippocampal slice cultures involves increases in intracellular Ca2+ and mitogen-activated protein kinases.

BACKGROUND The volatile anesthetic isoflurane reduces acute and delayed neuron death in vitro models of brain ischemia, an action that the authors hypothesize is related to moderate increases in intracellular calcium concentration ([Ca2+]i). Specifically, the authors propose that during hypoxia, moderate increases in [Ca2+]i in the presence of isoflurane stimulates the Ca2+-dependent phosphoryl...

متن کامل

Pharmacological evidence for lithium-induced neuroprotection against methamphetamine-induced neurodegeneration via Akt-1/GSK3 and CREB-BDNF signaling pathways

Objective(s): Neurodegeneration is an outcome of Methamphetamine (METH) abuse. Studies have emphasized on the neuroprotective properties of lithium. The current study is designed towards evaluating the role of Akt-1/GSK3 and CREB-BDNF signaling pathways in mediating lithium neuroprotection against METH-induced neurodegeneration in rats. Materials and ...

متن کامل

Isoflurane posttreatment reduces neonatal hypoxic-ischemic brain injury in rats by the sphingosine-1-phosphate/phosphatidylinositol-3-kinase/Akt pathway.

BACKGROUND AND PURPOSE Isoflurane, administered before or during cerebral ischemia, has been shown to exhibit neuroprotection in animal models of ischemic stroke. However, the underlying mechanism remains to be elucidated. In the present study, we determined whether isoflurane posttreatment provides neuroprotection after neonatal hypoxia-ischemia (HI) in rats and evaluated the role of the sphin...

متن کامل

Sevoflurane preconditioning-induced neuroprotection is associated with Akt activation via carboxy-terminal modulator protein inhibition.

BACKGROUND Sevoflurane preconditioning has a neuroprotective effect, but the underlying mechanism is not fully understood. The aim of the present investigation was to evaluate whether sevoflurane-induced cerebral preconditioning involves inhibition of carboxy-terminal modulator protein (CTMP), an endogenous inhibitor of Akt, in a rat model of focal cerebral ischaemia. METHODS Male Sprague-Dawl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2014